
Modeling Firewalls Using Hierarchical Colored Petri Nets

Christoph L. Schuba
christoph.schuba@sun.com

Sun Microsystems Laboratories
901 San Antonio Road

Palo Alto, CA 94303–4900
United States of America

Eugene H. Spafford
spaf@cs.purdue.edu

COAST/CERIAS and
Department of Computer Sciences

Purdue University
1398 Computer Science Building
West Lafayette, IN 47907–1398

United States of America

Abstract

This paper concentrates on one technological aspect of
providing communications security,firewall technology.
It introduces a formalism calledHierarchical Colored
Petri Nets (HCPN)in tutorial style. The main contribu-
tion of the paper is a description of how to model fire-
wall systems using Hierarchical Colored Petri Nets. A
byproduct of this approach is a novel way of modeling
audit streams in distributed systems.

HCPNs are well suited for modeling concurrent, dis-
tributed systems in which regulated flows of informa-
tion are significant, such as firewall systems which en-
force access control policies on network packets. The
paper introduces the basics of this modeling technique.
It demonstrates with several examples how firewalls can
be modeled. It outlines how simulations of such mod-
els can facilitate testing, performance analysis, and in-
teractive design exploration. Finally, the approach can
serve as the basis for formal analysis techniques avail-
able through Applied Petri Net Theory.

1 Introduction

Data communications networks have become an infras-
tructure resource for businesses, corporations, govern-
ment agencies, and academic institutions. Computer
networking, however, is not without risks as Howard
([18]) illustrates in his analysis of over 4000 security in-
cidents on the Internet between 1989 and 1995. Firewall
technology is only one mechanism to protect against net-
work based attack methods. A balanced approach to net-
work protection must include physical security, person-
nel security, operations security, communication secu-
rity, and social mechanisms ([20, Part II]).

Classically, firewall technology has been applied to
TCP/IP (transmission control protocol, [36]; internet

protocol, [37]) internetworks. Firewalls are used to
guard and isolate connected segments of internetworks.
“Inside” network domains are protected against “out-
side” untrusted networks, or parts of a network are pro-
tected against each other. Various architectures for fire-
walls have been published and built (see section 3).

Landwehr suggests the application of formal models
of security to secure system design (see [26,x1]): by
demonstrating that a design to which an implementa-
tion corresponds enforces a formal model of security, a
convincing argument can be made that the system is se-
cure. Firewall systems are often implemented through
a number of mechanisms that collectively achieve the
desired functionality. This paper introduces a formal-
ism based onHierarchical Colored Petri Nets(HCPN,
short CPN) to describe the functionality of such mecha-
nisms. CPNs are a formalism well suited for modeling
systems in which synchronization, concurrency, compo-
sition, and activities on regulated flows of information
are significant ([24]). It can be used for the represen-
tation, combination, simulation, and analysis of firewall
components and firewall systems. The introduction of
this design approach is the main contribution of this pa-
per.

The paper is organized as follows: Section 2 defines
terminology used throughout this paper. Section 3 pro-
vides a brief overview of firewall mechanisms. Sec-
tion 4 introducesColored Petri Nets(CPN) andHierar-
chical CPNs(HCPN) as formalisms for modeling fire-
wall mechanisms and firewall systems. Section 5 de-
scribes the modeling of an example firewall that com-
bines two firewall mechanisms, an IP packet filter and
an IPSEC (IP security working group) authentication
header (AH) module ([2]). Section 6 describes how sim-
ulation can be used to facilitate the generation of various
results about modeled systems, such as performance re-
sults and functionality assurance through testing. Sec-

1

tion 7 discusses some of the approaches available by
means of Applied Petri Net Theory to formally analyze
modeled systems. The paper closes with section 8, sum-
marizing its contributions and presenting ideas for future
research.

2 Terminology

This section defines terminology used throughout the pa-
per and gives a working definition of the termfirewall
technology. Technical terms not defined in this section
are used according to their definitions in [6, 11, 27]. Def-
initions in this section are based in [44, 6, 11, 27] but
extended to fit our needs.

We definecommunication trafficto be the transmis-
sion of information over a network. We denote the set
of all possible transmissions by lT. Any instance of com-
munication traffic, calleda transmission unit, is a tuple
(ctrl; data) = t 2 lT consisting of control information
(ctrl) and data (data) either of which may be empty,
but not both. The interpretation of what amount of in-
formation comprises a transmission unit depends on the
protocol layer of observation. For example, in a popular
instance of network layer functionality (see ISO model
[13]), the Internet Protocol ([36]), transmission units are
calleddatagrams, or packets.

Attribute t:ctrl may contain information, such as
source (t:ctrl:src) and destination (t:ctrl:dst) ad-
dresses, reliability and flow control information, ac-
cess request information (t:ctrl:acc), and quality of ser-
vice parameters (t:ctrl:qos). Attribute t:data may con-
tain application-specific payload or a payload that, at a
higher layer of abstraction, can be interpreted as a trans-
mission unit in itself. Transmission units do not need to
contain all fields oft. For example, some fields may not
be necessary at all, such ast:data in control messages;
others may be available through established state, such
ast:ctrl:qos in an existing connection.

A security policy is the definition of the security
requirements for a given system. It can be defined
as a set of standards, rules, or practices. We de-
fine a network domain security policylP as a sub-
set of a security policy, addressing requirements for
authenticity and integrity of communication traffic
t 2 lT, authorization requirements for access requests
req(t:ctrl:src; t:ctrl:dst; t:ctrl:acc) 8 t 2 lT, and au-
diting requirements.

A network policy domainlD is a set of interconnected
networks, gateways, and hosts offering services which
are governed by a network domain security policy lP.

Using the above defined terminology and a study of
firewall systems as described in section 3 we arrive at the
following working definition of the termfirewall tech-

nology.
Firewall technologyis a set of mechanisms that can

enforce a network domain security policy lP on commu-
nication traffic lT entering or leaving a network policy
domain lD in a fashion transparent to the user. Afirewall
system, orfirewall, is an instantiation of firewall technol-
ogy.

3 Firewall Mechanisms

In recent years leading up to mid 1997, a number of fire-
wall architectures have been proposed and implemented.
A variety of security mechanisms were developed and
used, such as packet filtering, packet labeling, network
address translation, or proxy forwarding. Several re-
search papers and some text books describe the different
approaches (see e.g., [16,x21], [6], [10], [47], [39], [41],
[40], [42], [4], [3], and [1]).

4 Formalism for Firewall Mech-
anisms: Hierarchical Colored
Petri Nets

This section introducesColored Petri Nets(CPN) and
Hierarchical CPNs(HCPN) as formalisms for firewall
mechanisms and firewall systems. The section begins
by arguing why we chose CPNs as a formalism. It
then introduces the graphical representations of CPNs
and HCPNs, explains their modeling equivalence and
presents some limitations of CPNs.

A Petri Net([33]) is a model expressed as a network of
interconnected locations and activities with rules that de-
termine when an activity can occur. It also specifies how
an activity changes the states of the locations associated
with it. Petri Nets have been used for the modeling and
analysis of systems ([32]). A considerable body of the-
ory exists ([34]) dealing with Petri Net properties, such
as liveness and reliability. Petri Nets have been devel-
oped over the years from a simple yet universally appli-
cable paradigm to various high-level and more complex
but far more convenient methodologies: one such ex-
ample is Hierarchical Colored Petri Nets. Their formal
definition can be found in [22] and [24].

The following paragraphs are a summary of features
that CPNs possess. These features make CPNs ap-
propriate and fitting for modeling firewall mechanisms
and systems. The summary is compiled from [23, 24].
CPNs promote problem-oriented structuring of a sys-
tem and make it possible to formulate and prove system
characteristics. They offer hierarchical descriptions and
are suited for modeling systems of distributed control
with multiple processes executing concurrently in time.

2

These characteristics support the modeling of firewalls
that are distributed systems consisting of several inter-
acting mechanisms. CPNs are asynchronous in nature
without an inherent measure of time although a measure
of time has been added in various extensions. The lack
of time reflects a philosophy that states that the only im-
portant property of time, from a logical point of view, is
in defining a partial ordering of the occurrence of events.
There are a large number of formal analysis methods by
which properties of instances of CPNs can be proved.
Computer support for complex analysis methods makes
it possible to obtain results that are impractical to be
achieved manually.

There are other formalisms that are at least equivalent
in computational power to CPNs, but not in regard to
convenience. Similar arguments apply as in the choice
of the right programming language to solve a given prob-
lem.

4.1 Colored Petri Nets (CPN)

The CPNs presented in this paper use the following no-
tation (cf. figure 1). They containplaces(ellipses) and
transitions(rectangles). Places (a.k.a.states) represent
conditions while transitions represent actions. Places
can contain instantiations, calledtokens, of structured
data types, calledcolors (italic names next to places),
hence the name Colored Petri Nets. The distribution of
tokens at places is called amarking. The initial marking
is determined by an initialization expression (font hel-
vetica expressions next to places; figure 2). The mark-
ing (boldface font helvetica expression next to places;
figure 2) for each place is a multi-set (cf. [24,x2:1] for
a definition of multi-sets) over the place’s color set.

Places and transitions can be connected by directed
arcs (arrows). Transitions areenabledif there are to-
kens in all places associated with incident arcs. An en-
abled transition canfire, if token values areboundac-
cording to relevantarc expressions(typewriter expres-
sions next to arcs) and theguard(typewriter expressions
enclosed in square brackets next to transitions) associ-
ated with the transition evaluates to true. A transition
fires by removing the required tokens from all places
connected through incident edges and by adding tokens
to all places connected through emanating edges. Arc
and guard expressions may have a set of variables as-
sociated with them. The substitution of values for vari-
ables can lead to their unification if they have common
instances. In CPNs the binding of values to these vari-
ables is equivalent to their unification ([45,x8:2]).

We use an extension ([25] and [29, Part 3]) of the
programming language ML (Meta Language; [30, 48])
to define colors, arc expressions, guards, and code sec-
tions. ML is a strongly typed, high-level functional pro-

gramming language optimized for abstract data struc-
ture specification and manipulation. The strong typing
forces designers to be specific about the data types of
represented information and ensures unambiguous inter-
face specifications for the combination of CPNs. For the
manipulation and simulation of CPNs we use the De-
sign/CPN software from the University of Aarhus ([29]).
It uses ML as the specification language of choice.

CPNs can be specified formally without a graphi-
cal representation: as a tuple consisting of a number
of sets (color, place, transition, and arc sets) and func-
tions (node, color, guard, arc expression, and initializa-
tion functions), as in [24, definition 2.5]. This method
of specification of CPNs is necessary for a number of
formal analysis methods by which properties of CPNs
can be proven. We chose a graphical representation of
CPNs over its set theoretic representation to graphically
express the structure of modeled systems.

4.2 Hierarchical Colored Petri Nets
(HCPN)

Figures 1 and 4 illustrate separate mechanisms that are
used to build firewalls. Firewalls consist of a set of
mechanisms that collectively provide network access
control. Furthermore, they use external functions, such
as authentication header verification, and external state,
such as TCP connection state. For practical reasons it is
not desirable to create a single large CPN that specifies
a given firewall system in a flat structure.

The concept of Hierarchical CPNs allows a designer
to construct large CPNs by combining a number of
smaller CPNs. They are beneficial for the modular com-
position of CPNs. HCPNs are defined in [19]. HCPNs
can be constructed top-down, bottom-up, or by a mix-
ture of these two strategies. HCPNs make it possible to
relate a number of individual CPNs to each other in a
formal way, and thus allow their formal analysis ([24]).

In a top-down design one starts with a simple high-
level description of a system without consideration for
internal details. A specification of detailed behav-
ior of the CPN is developed through stepwise refine-
ment ([49]). Stepwise refinement is achieved through
the application of a construct calledsubstitution tran-
sition, where a more complex CPN takes the place
of a transition. The CPN must conform to the in-
terface of the replaced transition and relate identically
to its surrounding arcs. TransitionsPacket Filter and
Authentication Header in figure 2 are examples of sub-
stitution transitions.

In a bottom-up design CPNs are combined into a
larger net throughfusion places. A fusion place is a
set of places that are considered to be identical. Even
if they are drawn as individual places they represent a

3

FltrRequest dgramrP In

FltrPassed dgramrP Out

FltrDcde

[rf = filter acl
 {dstip = (# dstip (# iphdr d)),
 dstport = (# dstport (# tcphdr d)),
 proto = (# proto (# iphdr d))}]

FltrPass [rf = FLTRPASS]FltrFail [rf = FLTRFAIL]

FltrDecided dgramdecdr

Audit audtrFG Audit

Secondary Page: IP Packet Filter

1‘d

1‘d

1‘{dgram=d,fltrrslt=rf}1‘{dgram=d,fltrrslt=rf}

1‘{dgram=d,fltrrslt=rf}

1‘(now(),r1(
 {fltrrslt=rf,
 iphdr =(# iphdr d),
 tcphdr=(# tcphdr d)}))

Figure 1: Example of a Colored Petri Net for IP packet filtering

4

single conceptual place. For each token that is added (re-
moved) at one of the places, an identical token is added
(removed) at all others. PlacesFltrRequest in figure 1
andP1 in figure 2 are a fusion place, for example.

A non-hierarchical CPN is called apage. Figures 1,
2, and 4 contain pages. A page that contains a substi-
tution transition is called asuperpage(e.g., figure 2); a
page that contains the detailed description of the activ-
ity modeled by the corresponding substitution transition
is calledsubpage(e.g., figure 1). A substitution tran-
sition is also called asupernode. Note that the places
connected to a substitution transition by a single arc
(calledsocket nodes) and their counterparts on the sub-
page (calledport nodes) are fusion places. The interface
between a superpage and a subpage is defined through
port assignmentswhere socket nodes are related to port
nodes.

4.3 Equivalence of CPNs and HCPNs

Any HCPN can be translated into a behaviorally equiva-
lent non-hierarchical CPN by replacing each substitution
node with a copy of its subpage. This replacement pro-
cess may need to be applied recursively. The recursion
is guaranteed to terminate because a strictly hierarchical
relationship between pages is enforced during construc-
tion. HCPNs are equivalent to CPNs, which means the
theoretical modeling power of the two classes are identi-
cal. However, they have different properties from a prac-
tical point of view: HCPNs allow a designer to cope with
large systems because of their facilities for structuring
and abstraction.

4.4 Limitations

The original model of Petri Nets has several limitations
that since have been addressed by extensions to the ba-
sic model. For example, in Petri Nets there is no way to
test if zero tokens are in an unbounded place (cf. [32]).
Although Petri Nets can be used for modeling systems at
different levels of abstraction, in their original form they
can be difficult to comprehend by humans, even when
a system is expressed at a high-level. Hierarchical Col-
ored Petri Nets are one example of an extended model
which already deals with a subset of the original model’s
limitations.

Many known algorithms that operate on Petri Nets
have high computational complexities ([24, Ch.4,5]). As
long as CPNs are only used for their expressive power
this limitation is not relevant. But several interesting
properties of CPNs, such as boundedness, or the ab-
sence of deadlocks, require the application of algorithms
with high computational complexity. High computa-
tional complexity, however, can still be acceptable if it

is sufficient to verify the properties in question infre-
quently and outside of performance critical paths, such
as at the time of design validation ([12, Ch.2]). Be-
cause of the high computational complexity of formal
verification of properties, high-level formalisms have a
disadvantage compared to low-level formalisms, such as
the originally defined Petri Nets ([50]). Section 7 gives
details on the computational complexity and analyses
methods for CPNs. In general, low-level formalisms are
a better choice for the formal analysis of systems ([50]).
These capabilities are a trade-off for a greater expres-
siveness in high-level formalisms.

5 Example: HCPN for a simple IP
Firewall

This section describes an example firewall that com-
bines two firewall mechanisms, an IP packet filter and
an IPSEC (IP security working group) authentication
header module. We structure the description top-down,
starting with the superpage.

The firewall system modeled in figure 2 is a superpage
consisting of two components: an IP packet filter, and an
AH module. PlacesP1, P2, andP3 contain tokens of
colordgramrthat represent IP datagrams. The two com-
ponents are represented as substitution transitions, with
the packet filter from figure 1 being applied first. Each
instantiationd of color dgramr in placeP1 represents
a datagramd that arrives at the firewall. Note thatd is
a transmission unit as defined in section 2 andd 2 lT.
Once substitution transitionPacket Filter fires,d is re-
moved from placeP1. It is only added to placeP2 if d
is added to placeFltrPassed (figure 1), a fusion place
of P2, within the subpage.

Thus, only datagrams that pass the transition
Packet Filter successfully can be input to the transi-
tion Authentication Header representing the IPSEC
AH firewall component. All datagrams that are added
to placeP3 therefore have passed both firewall compo-
nents successfully and can be forwarded to their destina-
tion. Figure 2 depicts placeAudit which models an audit
function collecting audit events.

Remark. The meaning of arcs around substitution transi-
tions, such asPacket Filter, differs from the meaning of
arcs around regular transitions. The set of arcs around a
substitution transition describes an interface of the sub-
stituted CPN rather than a unification of common in-
stances that must occur. It means that datagrams that are
removed from placeP1 because transitionPacket Filter
fires need not be added to placeP2. They are only added
if they appear in the fusion place corresponding to place
P2.

5

P1 dgramr

1‘{iphdr={srcip="13.1.64.93", dstip="128.10.17.72", proto=PFTCP},
 ahdr=1407,
 tcphdr={srcport=39256, dstport=21},
 data="some ftp access data"} +
1‘{iphdr={srcip="13.1.64.94", dstip="128.10.17.72", proto=PFTCP},
 ahdr=1407,
 tcphdr={srcport=14392, dstport=23},
 data="some telnet access data"} +
1‘{iphdr={srcip="13.1.64.95", dstip="128.10.17.72", proto=PFTCP},
 ahdr=4711,
 tcphdr={srcport=41926, dstport=21},
 data="some ftp access data"}

P2 dgramr

P3 dgramr 1

1‘{iphdr = {srcip = "13.1.64.93",dstip = "128.10.17.72",proto = PFTCP},
 ahdr = 1407,
 tcphdr = {srcport = 39256,dstport = 21},
 data = "some ftp access data"}

HS ah#2Authentication
 Header

Packet Filter HS pf#4

Primary Page: IP/IPSEC firewall

AuditFG Audit audtr

21‘(859680273,r1(
 {fltrrslt = FLTRFAIL,
 iphdr = {srcip = "13.1.64.94",dstip = "128.10.17.72",proto = PFTCP},
 tcphdr = {srcport = 14392,dstport = 23}}))+
1‘(859680273,r2(
 {vrfyrslt = VRFYFAIL,
 iphdr = {srcip = "13.1.64.95",dstip = "128.10.17.72",proto = PFTCP},
 ahdr = 4711,
 tcphdr = {srcport = 41926,dstport = 21}}))

1‘d

1‘d

1‘d

1‘d

Figure 2: Hierarchical Colored Petri Net for a simple IP firewall consisting of an IP packet filter and IPSEC authenti-
cation header module.

6

5.1 IP Packet Filtering

In a TCP/IP packet filtering firewall each datagram that
arrives at the firewall router is passed to a packet filter-
ing mechanism. The filter discards or forwards pack-
ets according to specified rules based on the fields of
the TCP/IP packet header, e.g., source and destination
addresses and port numbers. The rules operate exclu-
sively on the contents of the datagram, because no con-
text is maintained across datagrams that belong to the
same connection.

In current packet filtering routers, security policies are
translated into lists of rules (see [5], [9], [14]). Each
rule allows or denies data through the firewall based on
some semantic interpretation of the data contents. Rules
may interact with each other, e.g., through their order. If
no rule is applicable a default action is performed, e.g.,
“discard packet.”

Although a packet filter offers the opportunity to han-
dle and verify all data passing through it, the lack of
end-to-end context prevents a security association from
being established. Packet filtering does not provide in-
tegrity and authenticity control of the examined packets.
The application of filtering rules to each datagram intro-
duces some delay because their processing takes time.
It may introduce jitter because the calculation of filter-
ing results can introduce different amounts of delay for
different packets. Although efforts have been made to
automate (and improve the quality of) the generation of
the filtering rule set (see e.g., [8]), expressing high level
security policies in this low level mechanism is still a
practical challenge.

Figure 1 gives a CPN specification of a typical IP
packet filter. It models the invocation, filtering decision,
and decision enforcement of a packet filter.

Each datagram that arrives at the packet filter is repre-
sented by a token of colordgramrin placeFltrRequest.
In this example, a datagram (typedgramr) consists of
several possible types of headers (typesiphdrr, ahdrr,
tcphdrr) and a data portion (cf. figure 3 for the ML dec-
laration of colors in this example). The header contains
a subset of the TCP/IP header fields. It does not contain
all header fields as defined in [36], but rather those that
are necessary and sufficient to perform the packet filter-
ing operation in this simple example. The header fields
are used by the packet filter to decide if the datagram is
to be forwarded or discarded.

The transitionFltrDcde is enabled whenever the
marking of placeFltrRequest contains at least one to-
ken, i.e., whenever a datagram arrives at the packet filter.
Variabled is then bound to the datagram values, which
unifies all occurrences ofd to this instance. The guard
associated withFltrDcde uses functionfilter to ap-
ply the access control list defined inacl (cf. figure 3)

againstd and assigns the result torf (FLTRFAIL or
FLTRPASS). Functionfilter takes two arguments:
a list of tuples containing patterns and their correspond-
ing results (acl), and a pattern. It returns the result cor-
responding to the pattern if found in the access control
list, and the default safe valueFLTRFAIL otherwise.
The access control policy for IP packets is not encoded
in the CPN model, but inacl . This CPN model merely
describes a mechanism for enforcing whatever policy is
encoded.

Once transitionFltrDcde is fired,d is removed from
place FltrRequest. Datagramd and its filtering re-
sult rf are combined into a token of colordgramdecdr,
a record type, and added to placeFltrDecided. Depend-
ing on the value of variablerf exactly one of the two
transitionsFltrFail andFltrPass is enabled because both
are guarded by mutually exclusive but collectively ex-
haustive expressions. Note that a guard expression, such
as[rf = FLTRFAIL] , is no assignment but rather a
test for equality: after the first assignment to variablerf
in the guard of transitionFltrDcde all occurrences of
rf are unified and assignment and test for equality are
denoted by the same symbol (=) although they are differ-
ent operations. Therefore, guards in CPNs are predicates
with side effects.

In case transitionFltrFail is enabled and consequently
fired, figure 1 models information about datagramd be-
ing added to placeAudit. This process can be interpreted
as the datagram being discarded and details about the
denied access being logged. The place is included to
be able to collect information about discarded packets
for auditing purposes as well as the validation of the be-
havior of the packet filter itself. If transitionFltrPass
is enabled, thend is added to placeFltrPassed. Place
FltrPassed is the final place in this CPN. Each data-
gram in a marking ofFltrPassed can now be forwarded
towards its destination.

5.2 Modeling the IPSEC Authentication
Header Module

This section serves three purposes. It gives a second ex-
ample of a CPN firewall mechanism (the IP Authenti-
cation Header as defined in [2]), it demonstrates how to
build a CPN model for it, and it demonstrates how the
model interacts with its environment in an abstract man-
ner (e.g., through use of external state or execution of
external functionality).

Section 4 of the IETF (Internet Engineering Task
Force) standard document for the IP authentication
header ([2]) specifies the procedure a module has to per-
form to verify the authentication header in a received IP
packet1:

1Note: SPI stands forsecurity parameter index, an end-to-end se-

7

color datat = string;
color ipt = string;
color portt = int;
color protot = with PFUDP | PFTCP;
color spit = int;
color ait = int;
color timet = int;
color iphdrr = record srcip:ipt * dstip:ipt * proto:protot;
color ahdrr = spit;
color tcphdrr = record srcport:portt * dstport:portt;
color dgramr = record iphdr:iphdrr * ahdr:ahdrr * tcphdr:tcphdrr * data:datat;
color fltrrsltt = with FLTRFAIL | FLTRPASS;
color dgramdecdr = record dgram:dgramr * fltrrslt:fltrrsltt;
color spir = record spidx:spit * dstip:ipt * ai:ait;
color dgramspir = record dgram:dgramr * spi:spir;
color vrfyrsltt = with VRFYFAIL | VRFYPASS;
color dgramvrfyr = record dgram:dgramr * vrfyrslt:vrfyrsltt;
color fltrfailar = record fltrrslt:fltrrsltt * iphdr:iphdrr * tcphdr:tcphdrr;
color vrfyfailar = record vrfyrslt:vrfyrsltt * iphdr:iphdrr * ahdr:ahdrr *
 tcphdr:tcphdrr;
color audtu = union r1:fltrfailar + r2:vrfyfailar;
color audtr = product timet * audtu;

(*--*)
(*filter = fn : (’’a * fltrrsltt) list -> ’’a -> fltrrsltt*)
fun filter acl dgram =
 lookup dgram acl handle exlookup => FLTRFAIL;

(*verify = fn : spir -> dgramr -> vrfyrsltt*)
fun verify (s:spir) (d:dgramr) =
 case (# ai s) of
 42 => VRFYPASS |
 _ => VRFYFAIL;

(*now = fn : unit -> int*)
fun now () = tod ();

(*--*)
val acl = nil;
val acl = insert {dstip="128.10.17.72", dstport=21, proto=PFTCP} FLTRPASS acl;

(*--*)
var d : dgramr;
var s : spir;
var rv : vrfyrsltt;
var rf : fltrrsltt;

Figure 3: Example declaration of colors for the Colored Petri Net model of IP packet filtering and specification of an
access control list for IP packet filtering. Access to host 128.10.17.72 is granted for TCP on service port 21 (ftp). All
other accesses are denied.

8

‘‘Upon receipt of a packet con-
taining an IP Authentication
Header, the receiver first uses
the Destination Address and SPI
value to locate the correct Se-
curity Association. The receiver
then independently verifies that
the Authentication Data field
and the received data packet are
consistent. [..]

[..] If the processing of the

authentication algorithm indi-

cates the datagram is valid, then

it is accepted. If the algo-

rithm determines that the data and

the Authentication Header do not

match, then the receiver SHOULD

discard the received IP datagram

as invalid and MUST record the

authentication failure in the sys-

tem log or audit log. If such a

failure occurs, the recorded log

data MUST include the SPI value,

date/time received, clear-text

Sending Address, clear-text Desti-

nation Address, and (if it exists)

the clear-text Flow ID. The log

data MAY also include other infor-

mation about the failed packet.’’

This procedure can be divided into four steps as follows:

1. Receipt of packet

2. Location of security association

3. Verification of authentication data field

4. Enforcement of authentication verification result

Figure 4 depicts the CPN for the AH mechanism. Step
1 is modeled through an instantiation of colordgramr
in initial placeAhRequest. PlaceSpiDb models ex-
ternal state: the set of established security associations.
The lookup (step 2) of a security association is achieved
through the matching of the security parameter index
field present in the authentication header of datagramd
against the spi index values in members of the marking
of placeSpiDb. It is reasonable to model the repository
of security parameter indices(SPI) in this fashion be-
cause SPIs are established by external procedures, such
as manual configuration or a key management proto-
col. Key management mechanisms are used to negotiate
parameters other than keys to manage security associa-
tions.

curity association.

The verification of the authentication data field
(Step 3) takes place in the guard of transitionAhVrfy
similar to the way we modeled filtering in figure 1.
Our model contains a stub routine for the authentication
header verification (see functionverify in figure 4).
The datagramd is then assigned to placeAhPassed if
the outcome of the verification is positive. Subsequently,
the enforcement of the result takes place (step 4).

In case the result isVRFYPASS, d will be added to
placeAhPassed and continue on its path through the
system. In case the result isVRFYFAIL, certain infor-
mation fromd will be augmented by further data fields,
such as a time stamp, and added to placeAudit. This
models the audit requirement as specified in [2,x4].

The marking of placeSpiDb in figure 4 contains two
examples of security associations. The expression above
the place is the initialization expression for the state; the
one below is its current marking. The particular values
of these markings were used in a simulation and are not
of specific interest because they were chosen arbitrarily.
Note that in this model the marking of placeSpiDb will
always be identical to the initial marking because a token
that is unified tos for the matching that takes place in the
guard for transitionSpiLkup is returned to placeSpiDb
after transitionSpiLkup is fired.

5.3 Interpretation of Simulation Results
for the Example Firewall

We used the designCPN ([29]) CPN software for simu-
lations of this firewall model. Figures 1, 2, and 4 display
the markings of the model when no more transitions are
enabled, i.e., after the end of a simulation. In figure 2
placeP3 has instances of colordgramrin its final mark-
ing, and placeAudit has instances of coloraudtr in its
final marking.

The tokens that are part of the marking in placeAudit
recorded events where datagrams did not pass the fire-
wall. The first token contains one audit record describ-
ing denied access enforced by the packet filter because
the access policy encoded in the access control listacl
allowed access only to the ftp port 21 (see figure 5).

The second token in placeAudit represents a data-
gram that did not pass the authentication verification be-
cause we simulated an authentication failure for security
parameters index 4711 and its bound authentication in-
formation 43. Only authentication information 42 leads
to a positive verification result in functionverify in
figure 6. Finally, the token in placeP3 passed both the
packet filtering and the authentication verification and
reached the final state of the CPN.

The color of the audit place is a product type contain-
ing a time stamp and a union type. The union type de-
pends upon the type of the logged information. Events

9

SpiLkup

[(# spidx s) = (# ahdr d)
 andalso
 (# dstip s) =
 (# dstip (# iphdr d))]

AhPassedP Out dgramr

AhRequestP In dgramr

AhSpiMatched dgramspir

AhVerified dgramvrfyr

AhVrfy [rv = verify s d]

AhPass [rv = VRFYPASS]AhFail [rv = VRFYFAIL]

SpiDbspir

1‘{spidx=1407,dstip="128.10.17.72", ai=42}+
1‘{spidx=4711,dstip="128.10.17.72", ai=43}

2

1‘{spidx = 1407,dstip = "128.10.17.72",ai = 42}+
1‘{spidx = 4711,dstip = "128.10.17.72",ai = 43}

Audit audtrFG Audit

Secondary Page: IPSEC Authentication Header Module

1‘d

1‘{dgram=d,spi=s}

1‘{dgram=d,spi=s}

1‘{dgram=d,vrfyrslt=rv}

1‘d

1‘s

1‘{dgram=d,vrfyrslt=rv}

1‘{dgram=d,vrfyrslt=rv}

1‘s

1‘(now(),r2(
 {vrfyrslt=rv,
 iphdr =(# iphdr d),
 ahdr =(# ahdr d),
 tcphdr=(# tcphdr d)}))

Figure 4: Example IPSEC authentication header

val acl = nil;
val acl = insert fdstip="128.10.17.72", dstport=21, proto=PFTCP g FLTRPASS acl;

Figure 5: Example access control list. Access is only allowed to the ftp port (21) on the host with IP address
128.10.17.72. (Excerpt from previous figure 3.)

(*verify = fn : spir -> dgramr -> vrfyrsltt*)
fun verify (s:spir) (d:dgramr) =

case (# ai s) of
42 => VRFYPASS |

=> VRFYFAIL;

Figure 6: Example verification function implementing the policy that only authentication information 42 is accept-
able. More realistically, this function would be replaced by cryptographic authentication code as implemented in our
prototype. (Excerpt from previous figure 3.)

10

are logged by adding an arc from the transition repre-
senting the event’s action to an audit place. In our exam-
ple we used a fusion place for modeling the audit so that
all logged events are collected in the same place. Infor-
mation present at a transition as well as global state can
be logged. Information (in contrast to events) does not
need to be logged at the earliest transition because it is
represented in a natural way in this model: instantiations
of colors. It could be carried through the execution of a
CPN as part of a token. We do not postulate which infor-
mation is logged at what place in the net but we provide
a simple method for modeling audit mechanisms. The
research of others addresses the question of content (see
e.g., [38]).

5.4 Challenges of Modeling

We gave an example of how to model firewall mecha-
nisms in section 5.2.

Creating CPNs is a task that requires human expertise
and experience, similar to other modeling techniques.
Jensen provides a number of guidelines in [24,x1:5] that
can help modelers develop CPNs.

Designers need to understand the behavior of a mech-
anism before they can formalize it, which represents a
problem if a given firewall mechanism is offered as a
closed platform only. Designers can infer its behavior
only through observation, marketing brochures, and pos-
sibly reverse engineering. Possible mismatches between
the real firewall mechanism and its functional descrip-
tion can be difficult to detect.

One can imagine that vendors will provide formal de-
scriptions of the behavior of their products as a service to
their (potential) customers. Using the tool, guided by the
formalism of the HCPNs, and using a library of generic
firewalls and specific CPNs for firewall components, we
can provide a beneficial design environment. Silva and
Valette ([46]) argues that catalogs of well tested sub-
nets allow component reusability which in turn leads to
significant reductions in the modeling effort. The avail-
ability of such a library should encourage the adoption
of HCPN technology by firewall designers, who would
not need to create the models from scratch. This library
would enable designers to explore various firewall de-
signs using the available product formalizations in a sim-
ulation environment.

6 Simulation

Once a firewall mechanism or even a complete firewall
system are modeled, our approach allows the simulation
of nets. Statistics of simulations can provide insights
about characteristics, such as timing constraints and ca-

pacity requirements and simulation enables the explo-
ration of various designs.

6.1 Testing

Simulation enables firewall testing: for example,
recorded sequences of datagrams can be played back as
input to a CPN simulator modeling the behavior of a
firewall design under consideration. Sequences of data-
grams representing attacks can be constructed to deter-
mine how a firewall design can handle them. Further-
more, the testing of security policies is possible: an
HCPN model would serve as a framework for the call
to the function that calculates the policy decision (e.g.,
functionfilter with policy representationacl in fig-
ure 3). Observed behavior of the policy decision module
can then be examined against expected behavior.

This approach is not sufficient to prove correctness of
a system, but can at best reveal errors, similar to testing
in software engineering ([22]).

6.2 Performance Analysis

The performance of firewall systems can be investigated
through the use ofTimed Colored Petri Nets. Sev-
eral extensions to CPNs to introduce time are possible.
Jensen’s Timed CPNs are CPNs where places and transi-
tionsconsumetime and tokens are augmented by a time
stamp. Time stamps contain the time after which a to-
ken is ready to be consumed by a transition. A global
clock (discrete or continuous) keeps track of the simu-
lation time. Simulations in timed CPNs are run analo-
gously to discrete event simulations.

Values, such as “the average number of tokens in a
given place” or “the average waiting time of a token in a
given place,” can be determined by simulations in timed
CPNs. In our previous examples, tokens represented
datagrams traversing a firewall system. The calculated
values would therefore give designers profiling informa-
tion, such as datagram delays in certain firewall func-
tions. Estimates or measurements in a real world sys-
tem must precede the simulation. The approach is use-
ful in cases where analytical solutions through other for-
mal approaches, such as Markov chains, cannot be ob-
tained because their equation systems become too com-
plex to solve ([23]). The introduction of timing infor-
mation can result in infinite occurrence graphs (see sec-
tion 7.1) for systems that have finite occurrence graphs
otherwise ([23]). By specifying equivalence classes over
the time domain one can limit these infinite occurrence
graphs to finite subgraphs for which the dynamic prop-
erties and performance characteristics can still be deter-
mined ([23]).

11

6.3 Design Tool

Exploration of various designs is desirable because crit-
ical aspects of systems, such as single points of failure,
can be determined. A design tool for firewall systems is
expected to be beneficial in the early stages of firewall
design: compared to prototyping, system simulation is a
low cost alternative for design exploration. Furthermore,
this approach is beneficial over a white paper evaluation
because dynamic properties of components can be ex-
plored. Note that this approach is not specific to firewall
design, but system design in general. McLendon and
Vidale describe a similar approach in their research on
modeling and analysis of an ADA system in [28].

7 Formal Analysis of CPNs

The early detection of design errors saves design time
and costs ([7]). Jensen ([24, Ch.4,5]) lists a number
of possible properties of Colored Petri Nets that can be
analyzed by informal or formal analysis methods. The
properties are divided into static and dynamic proper-
ties. Static (or structural) properties characterize CPNs
without consideration of possible occurrence sequences
while dynamic (or behavioral) properties characterize
the behavior of instantiated CPNs. In general, dynamic
properties are more difficult to verify than static proper-
ties, especially if one relies on informal methods. For-
mal analysis methods for dynamic properties often are
of high computational complexity because they need to
explore large combinatorial spaces.

7.1 Occurrence Graphs as the Basis for
Analysis

Occurrence graphs are directed acyclic graphs (see [12,
x5:4]). Their nodes represent the reachable markings
of CPNs, and their arcs represent variable bindings be-
tween nodes. Their construction is a partially decidable
problem. An algorithm exists that halts if and only if the
occurrence graph is finite. Otherwise the algorithm does
not terminate ([23, Prop. 1.4]).

The possible state explosion of occurrence graphs is
a known problem (cf. [21, 28]). One can apply ad hoc
reductions of occurrence graphs. However, those reduc-
tions usually do not preserve the behavior and proper-
ties of the original model. Jensen discusses in [22,x4:2]
a variety of approaches for the reduction of occurrence
graphs, such as by means of covering markings, by ig-
noring some of the occurrence sequences that are identi-
cal, by means of symmetries, or by expressing states as
symbolic expressions.

Even if the occurrence graph is finite, its construction
may still take a long time because occurrence graphs are

generally large. The size of the graphs is dependent on
several factors, such as the modeled problem or the re-
quired color sets and their domains. For example, the
number of nodes in the occurrence graph for the dining
philosophers problem as modeled in [23,x1:6] grows as
a Fibonacci series, i.e.,N(n) = N(n� 1) +N(n� 2),
whereN(2) = 3 andN(3) = 4. The growth of Fi-
bonacci numbers is exponential ([12,x2:2]).

The construction of the occurrence graphs is the dom-
inant cost in the analysis of dynamic properties of CPNs.
Many algorithms of interest to us, such as those de-
scribed in [23] that operate on occurrence graphs, are of
at most polynomial complexity. Therefore, the smaller
the occurrence graph the lower the requirements for
computation time. There are methods which reduce the
size of occurrence graphs by exploiting symmetry and
equivalence relations (see [23, Ch. 2,3]).

7.2 Invariants

Consider predicates which may be applied to the states
of a system. A predicate is called an invariant if and only
if it is valid in each state. Jensen explains the theory and
use of invariants in [23, Ch. 4]. In CPNs there are place
and transition invariants, and they are applied in the fol-
lowing way: First, equations are formulated which are
postulated to be always satisfied. Second, it is proven
that the equations are indeed satisfied. Third, the equa-
tions are then used to prove some of the dynamic prop-
erties of the modeled system (e.g., reachability, bound-
edness, home, liveness, and fairness). Place invariants
are interpreted as sums of tokens which remain constant
with the firing of transitions. Transition invariants deal
with repetitive firing sequences.

Invariant analysis can prove structural properties of
a CPN independent of its marking. Invariants have an
advantage over occurrence graphs insofar as they avoid
the possible state explosion.

Invariants over the number of datagrams in a net can
be used to answer questions about firewall mechanisms,
such as these:

� Did all datagrams that reach the final acceptance
states originate in an authorized start state? A ver-
ified invariant to that extent assures that no trans-
mission units that reach final states can get intro-
duced into the firewall through means other than
placement in initial states. In other words, firewall
controls cannot be bypassed.

� Do certain attributes of transmission units adhere
to a desired functional relationship? A first sim-
ple example of such a functional relationship is the
identity function. It can be used to ensure that at-
tributes, such as destination machine address and

12

port numbers, do not change during net execution.
A second example is a function mapping internal
addresses to externally visible addresses, such as in
network address translation(NAT) firewall mecha-
nisms ([15]).

� Do all transmission units reach one of the defined
final states representing acceptance or rejection?
An invariant to that extent that holds would assure
that no transmission units can get lost in the firewall
implementation. Such a loss would be interpreted
by the outside world as a possibly wrongful rejec-
tion of the datagram.

7.3 Static Analysis

Jensen defines in [24,x4:1] a set of static properties on
arc expressions and transitions. A static analysis of the
type of CPN models which are generated by our ap-
proach (e.g., in figures 1, 2, and 4) reveals that all arc ex-
pressions areuniformwith multiplicity 1, all transitions
areuniform, all transitions areconservative, all transi-
tions, except transitionSpiLkup have thestate machine
property, the primary page net in figure 2 isopenbe-
cause it has places as border nodes, and all secondary
page nets areclosedbecause they have transitions as bor-
der nodes.

The previous properties determine that the CPNsas
constructedhave a simple structure. Most transitions
are conservative with the state machine property because
they represent actions on single transmission units (for
example datagrams). The transitions output single data
items (for example a transmission unit augmented to a
compound data structure by a result of the action taken:
recorddgramvrfyras in transitionAhVrfy).

Such a simple structure is preferable over a more com-
plex structure because it adds less complexity to the oc-
currence graph. As we argued in section 7.1, smaller
occurrence graphs are an advantage during the formal
analysis of dynamic properties.

7.4 Dynamic Analysis

The dynamic analysis of CPNs explores properties, such
asboundedness, liveness, home markings, conservation,
reachability, coverability, firing sequences, equivalence
problems, and subset problems. Definitions for these
properties can be found in [32] and [24]. In the follow-
ing we examine two of these properties in more detail:
boundedness and liveness.

Safetyproperties stipulate somebad condition never
occurs during the execution of a net. Examples for safety
properties are boundedness, reachability, mutual exclu-
sion, and freedom from deadlock.

Bad conditions can be represented by an assertion,
Pbad, which is mapped totrue in exactly those states
in which the condition is true. Therefore, if the safety
property is true of a net, no occurrence sequence can
contain such a state. Hence, the bad condition happens
at some particular point in the execution. For a safety
property to be true of a net,:Pbad must be a net invari-
ant. One way to demonstrate a safety property is to find
a true program invariantI , so thatI) :Pbad. Another
way to express this idea is through the use of tempo-
ral logic ([35]). Temporal logic introduces two temporal
operators on assertions:� (always) and� (eventually).
A safety property can be expressed as:�:Pbad.

Thelivenessproperty stipulates eventually somegood
conditionQgood will occur during the execution of the
net:�Qgood. Owicki and Lamport ([31]) presents a for-
mal proof method based on temporal logic and proof lat-
tices for deriving liveness properties of concurrent pro-
grams.

There is an interesting difference between safety and
liveness:Pbad in a safety property must be a discrete
event which occurs at some point in the execution while
Qgood in a liveness property need not be discrete or oc-
cur at some particular point.

7.4.1 Boundedness

Upper (lower) bounds on places indicate the maximum
(minimum) number of tokens of a particular color which
can be in that place at a given time. The simple firewall
model in sections 5 has no upper bounds imposed on its
places. In particular, placeAudit is not bounded.

The CPNs for the packet filter in figure 1 and the
authentication header module in figure 4 are modeling
mechanisms which in current implementations are ef-
fectively limited to dealing with one datagram at a time.
This restriction places upper bounds of 1 on all but the
initial (FltrRequest andAhRequest) and final places
(FltrPassed, AhPassed, and Audit) of these CPNs.
Places which represents external state, such asSpiDb,
are subject to their own boundedness constraints.

One often needs to specify an event may happen only
when a given condition does not hold, i.e., when the
corresponding token is absent. The attempt to match a
dgramr token to aspir token in transitionSpiLkup in
figure 4 can serve as an example. In the current model, if
for a given tokend no matching token is present in place
SpiDb, tokend cannot make progress towards places
Audit or AhPassed. To solve the liveness problem in
nets with unbounded places, Heuser and Richter suggest
in [17] to use complementary places. The initial mark-
ing of a complementary place is the whole domain of the
key of the token color to match. Tests for boundedness
can discover these conditions.

13

Boundedness constraints are also useful to model lim-
ited resources. Bounded places imply finite capaci-
ties. Determining finite bounds of places can be used to
gather information about resource requirements at those
places.

7.4.2 Liveness

Liveness in a CPN means that a set of binding elements
remains active. Liveness in a firewall representation can
be interpreted as: every possible datagram starting out in
placeP1 will eventually reach afinal state(representing
acceptance or rejection of the datagram). This modeling
approach implies that a datagram cannot disappear be-
tween its entry to the net and its reaching the final state.

8 Conclusion

This paper presented a method for modeling firewall
components and firewall systems alike. It is based on
a formalism that usesHierarchical Colored Petri Nets
(HCPN, short CPN) to describe the functionality of
mechanisms used by firewall technology. HCPNs pro-
vide us with a theoretical framework and means of de-
scription, composition, simulation, and analysis of fire-
wall systems.

We applied the formalism to a firewall system consist-
ing of an IP packet filter followed by the IP authentica-
tion header module. By doing so we introduced CPN
terminology and demonstrated how to model a network
security mechanism given only its verbatim standard’s
specification. We built the model in a modular fash-
ion and demonstrated how the hierarchical concepts of
CPNs can be used to combine several mechanisms into
a comprehensive firewall system. We learned how to
model audit in CPN models. After we developed a basic
modeling technique, we used the Design/CPN tool for
the incremental building, syntax checking, and simula-
tion of firewall models.

We discussed how the simulation of firewall models
can be used for firewall and policy testing, for perfor-
mance analysis, and as a basis for a design tool exploring
design alternatives. Finally, we listed a number of static
and dynamic (safety and liveness) properties defined for
CPNs, which can be interpreted as desirable properties
in the problem domain of firewall systems.

The final two sections of this paper present several
areas for future research. For example, it may be bene-
ficial to further investigate the question of which desir-
able properties of firewall systems can be expressed as
dynamic properties, which in turn can be verified me-
chanically for HCPNs. We conjecture that concentrat-
ing on invariants as an analysis technique is likely to be
a rewarding strategy: invariants are difficult to specify,

but are more practical to verify. They avoid the prob-
lem of state explosion in occurrence graphs. Some of
the properties that can be verified would allow design-
ers and maintainers to gain additional confidence into a
firewall system under investigation.

References

[1] R. Atkinson.RFC-1825 Security Architecture for the In-
ternet Protocol. Network Working Group, Aug. 1995.

[2] R. Atkinson.RFC-1826 IP Authentication Header. Net-
work Working Group, Aug. 1995.

[3] F. M. Avolio and M. J. Ranum. A Network Perime-
ter with Secure External Access. In2nd Symposium on
Network and Distributed System Security (NDSS), San
Diego, California, Feb. 1994. Internet Society (ISOC).

[4] F. M. Avolio and M. J. Ranum. A Toolkit and Meth-
ods for Internet Firewalls. InTechnical Summer Confer-
ence, pages 37–44, Boston, Massachusetts, June 1994.
USENIX.

[5] M. L. Bailey, B. Gopal, M. A. Pagls, L. L. Peterson, and
P. Sarkar. PathFinder: A Pattern-Based Packet Classi-
fier. In Proceedings of the 1st Symposium on Operating
System Design and Implementation (OSDI), Monterey,
California, Nov. 1994. USENIX.

[6] S. M. Bellovin and W. R. Cheswick.Firewalls and In-
ternet Security. Addison-Wesley Publishing Company,
Inc., 1994.

[7] F. P. Brooks, Jr. The Mythical Man-Month. Addison-
Wesley Publishing Company, Inc., second edition, 1995.

[8] C. J. Calabrese. A Tool for Building Firewall-Router
Configurations. The USENIX Association, Computing
Systems, 9(3):239–253, Summer 1996.

[9] D. B. Chapman. Network (In)Security Through IP
Packet Filtering. InProceedings of the 3rd USENIX
UNIX Security Symposium, Baltimore, Maryland, Sept.
1992. USENIX.

[10] D. B. Chapman and E. D. Zwicky.Building Internet
Firewalls. O’Reilley & Associates, Inc., Sebastopol,
California, Sept. 1995.

[11] D. E. Comer. IP over ATM: Concept and Practice. In-
terop talk on IP over ATM, Mar. 1996.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.In-
troduction to Algorithms. MIT Press, Cambridge, Mas-
sachusetts, 1990.

[13] J. D. Day and H. Zimmermann. The OSI Reference
Model. In Proceedings of the IEEE, volume 71, pages
1334–1340. IEEE, Dec. 1983.

[14] Digital Equipment Corporation (DEC).Screening Exter-
nal Access Link (SEAL) Introductory Guide, 1992.

[15] K. B. Egevang and P. Francis.RFC-1631 The IP Network
Address Translator (NAT). Network Working Group,
May 1994.

[16] S. Garfinkel and G. Spafford.Practical UNIX & Inter-
net Security. O’Reilley & Associates, Inc., Sebastopol,
California, second edition, 1996.

[17] C. A. Heuser and G. Richter. Constructs for Modeling
Information Systems with Petri Nets. In K. Jensen, ed-
itor, 13th International Conference on Application and

14

Theory of Petri Nets, number 616 in Lecture Notes in
Computer Science, Sheffield, UK, 1992. Springer Ver-
lag.

[18] J. D. Howard.An Analysis Of Security Incidents On The
Internet 1989-1995. PhD thesis, Carnegie Mellon Uni-
versity, Apr. 1997.

[19] P. Huber, K. Jensen, and R. M. Shapiro. Hierarchies in
Coloured Petri Nets. In G. Rozenberg, editor,Advances
in Petri Nets, number 524 in Lecture Notes in Computer
Science. Springer Verlag, 1991.

[20] D. Icove, K. Seger, and W. VonStorch.Computer Crime.
O’Reilley & Associates, Inc., Sebastopol, California,
1995.

[21] R. Janicki and M. Koutny. Optimal Simulations, Nets,
and Reachability Graphs. In G. Rozenberg, editor,
Advances in Petri Nets, number 524 in Lecture Notes
in Computer Science, pages 205–226. Springer Verlag,
1991.

[22] K. Jensen. Coloured Petri Nets: A High Level Language
for System Design and Analysis. In G. Rozenberg, edi-
tor,Advances in Petri Nets, number 524 in Lecture Notes
in Computer Science. Springer Verlag, 1991.

[23] K. Jensen.Coloured Petri Nets: Basic Concepts, Anal-
ysis Methods, and Practical Use, volume 2. Springer-
Verlag, New York Inc., 1995.

[24] K. Jensen.Coloured Petri Nets: Basic Concepts, Anal-
ysis Methods, and Practical Use, volume 1. Springer-
Verlag, New York Inc., second edition, 1996.

[25] K. Jensen.Design/CPN Overview of CPN ML Syntax.
Version 3.0, 1996.

[26] C. E. Landwehr. Formal Models for Computer Security.
ACM Computing Surveys, 13(3):247–278, Sept. 1981.

[27] D. Longley and M. Shain.Data & Computer Security.
Dictionary of Standards, Concepts, and Terms. Macmil-
lan Publishers Ltd., 1987.

[28] W. W. McLendon, Jr. and R. F. Vidale. Analysis of an
Ada System Using Coloured Petri Nets and Occurrence
Graphs. In K. Jensen, editor,13th International Confer-
ence on Application and Theory of Petri Nets, number
616 in Lecture Notes in Computer Science, pages 384–
388, Sheffield, UK, 1992. Springer Verlag.

[29] Meta Software Corporation. Design/CPN Reference
Manual. Cambridge, Massachusetts, 1993.

[30] R. Milner. The Standard ML Core Language. Techni-
cal Report CSR-168-84, Edinburgh University Internal
Report, 1984.

[31] S. S. Owicki and L. Lamport. Proving Liveness Prop-
erties of Concurrent Programs.ACM Transactions on
Programming Languages and Systems, pages 455–495,
July 1982.

[32] J. L. Peterson.Petri Net Theory and the Modeling of
Systems. Prentice-Hall, Englewood Cliffs, New Jersey,
1981.

[33] C. A. Petri. Kommunikation mit Automaten. Technical
Report 2 (Schriften des IIM), Institut f¨ur Instrumentelle
Mathematik, Bonn, Germany, 1962.

[34] H. Plünnecke and W. Reisig. Bibliography on Petri
Nets 1990. In G. Rozenberg, editor,Advances in Petri
Nets, number 524 in Lecture Notes in Computer Science.
Springer Verlag, 1991. Over 4000 references to publica-
tions dealing with Petri Nets.

[35] A. Pnueli. The Temporal Logic of Programs. In18th

Symposium on the Foundations of Computer Science,
pages 46–57, Nov. 1977.

[36] J. Postel, editor.RFC-791 Internet Protocol. Informa-
tion Science Institute, University of Southern California,
Sept. 1981.

[37] J. Postel, editor. RFC-792 Internet Control Message
Protocol. Information Sciences Institute, University of
Southern California, Sept. 1981.

[38] K. E. Price. Host-Based Misuse Detection and Conven-
tional Operating Systems’ Audit Data Collection. Mas-
ter’s thesis, Department of Computer Sciences, Purdue
University, West Lafayette, Indiana, Dec. 1997.

[39] M. J. Ranum. A Network Firewall. InProceedings of the
1st International Conference on Systems and Network
Security and Management (SANS-I), June 1992.

[40] M. J. Ranum. Internet Firewalls — An Overview, Oct.
1993. (unpublished).

[41] M. J. Ranum. Thinking About Firewalls. InProceedings
of the 2nd International Conference on Systems and Net-
work Security and Management (SANS-II), Apr. 1993.

[42] M. J. Ranum, A. Leibowitz, B. Chapman, and B. Boyle.
Firewalls-FAQ, 1994.

[43] C. L. Schuba. On the Modeling, Design, and Imple-
mentation of Firewall Technology. PhD thesis, Depart-
ment of Computer Sciences, Purdue University, West
Lafayette, Indiana, Dec. 1997.

[44] C. L. Schuba and E. H. Spafford. A Reference Model
for Firewall Technology. InProceedings of the 13th An-
nual Computer Security Applications Conference (AC-
SAC), pages 133–145, San Diego, California, Dec. 1997.
IEEE Computer Society.

[45] R. Sethi.Programming Languages. Concepts and Con-
structs. Addison-Wesley Publishing Company, Inc.,
1990.

[46] M. Silva and R. Valette. Petri Nets and Flexible Man-
ufacturing. In G. Rozenberg, editor,Advances in Petri
Nets, Lecture Notes in Computer Science. Springer Ver-
lag, 1989.

[47] K. Siyan and C. Hare.Internet firewalls and network
security. New Riders Pub., Indianapolis, Indiana, 1995.

[48] Å. Wikström. Functional Programming Using Standard
ML. Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

[49] N. Wirth. Program Development by Stepwise Refine-
ment.Commun. ACM, 14(4):221–227, Apr. 1971.

[50] M. Young. Private communication, 1997.

15

